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Abstract

The use of Convolutional Neural Networks (CNN)
in medical imaging has often outperformed pre-
vious solutions and even specialists, becom-
ing a promising technology for Computer-aided-
Diagnosis (CAD) systems. However, recent works
suggested that CNN may have poor generalisation
on new data, for instance, generated in different
hospitals. Uncontrolled confounders have been pro-
posed as a common reason. In this paper, we exper-
imentally demonstrate the impact of confounding
data in unknown scenarios. We assessed the effect
of four confounding configurations: total, strong,
light and balanced. We found the confounding ef-
fect is especially prominent in total confounder sce-
narios, while the effect on light and strong con-
founding scenarios may depend on the dataset ro-
bustness. Our findings indicate that the confound-
ing effect is independent of the architecture em-
ployed. These findings might explain why models
can report good metrics during the development
stage but fail to translate to real-world settings.
We highlight the need for thorough consideration
of these commonly unattended aspects, to develop
safer CNN-based CAD systems.

1 Introduction

The use of Machine Learning (ML) and Deep
Learning (DL) in medicine is very promising to
improve patient care. Such solutions are applied
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to many medical areas like oncology and neurol-
ogy. One of the most promising use cases includes
assisting the radiologists in the diagnosis process.
DL is expected to provide more accurate, faster and
objective (in that it reports quantitative analysis)
diagnosis [12]. However, these systems might fail to
translate into real-world scenarios, presenting mul-
tiple challenges for safe applications [19]. It has
been reported that ML-based health systems pro-
duce systematic errors on patient subgroup clas-
sification, consequently generating wrong predic-
tions and flawed risk estimations [2I]. Such sys-
tematic errors could originate at any stage of de-
veloping pipeline, from dataset generation, model
development, model evaluation until its final de-
ployment [2I]. In a recent example, a systematic
review that analysed prediction models for the di-
agnosis and prognosis of COVID-19 pneumonia re-
ported that almost all of the published models for
prediction were poorly documented. Consequently,
such models have a high risk of associated bias
and their performance was overrated and led to
poor generalisation [23]. In the same vein, ref.
[] systematically reviewed the publicly available
X-Ray imaging datasets employed to build such
models. This work suggested that, without well-
documented datasets and/or complementary meta-
data, models may learn induced bias or uncon-
trolled confounders as strong features during the
model training, which hampers their safe transla-
tion into clinical practice. Previous works demon-
strate that in case of potential confounding sce-
narios, shortcuts can have a variable effect on the
model generalisation [2]. Considering the potential

© The author(s). Licensee Septentrio Academic Publishing, Tromsg, Norway. This is an open access article distributed
under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).


https://doi.org/10.7557/18.6302
http://creativecommons.org/licenses/by/4.0/

harm, further analysis of the confounding variables
with respect to the model generalisation capacity
is needed.

1.1 Bias and confounders in DL

The problems of bias and confounders in DL are
becoming more prominent due to the harm and
long impact effects they may have in high-stakes
disciplines, such as health-care, education or jus-
tice [16], especially in underrepresented groups [13].
Bias can be defined as a systematic error presented
in the data that may result in wrong predictive
estimations. In this context, particularly relevant
are selection bias and collider bias, where a pop-
ulation subgroup with certain characteristics (e.g.
age, gender) is more likely to be selected, having
an increased presence in the dataset compared to
its presence in the general population. Induced as-
sociations between variables may thus affect the
sampling likelihood of an individual [5]. Addition-
ally, confounding factors are variables that influ-
ence both the predictor and the outcome [20]. The
presence of uncontrolled confounders leads to spu-
rious associations, hampering generalizability and
transportability [4].

In medical imaging, such difficulties are often
augmented by data scarcity, population and preva-
lence shifts. Common practices to circumvent
such issues include mixing datasets from different
populations and/or training models with popula-
tions that are different from the target population.
Nonetheless, these practices can lead to learn spuri-
ous correlations from the confounding factors orig-
inated from differences in the dataset generative
process (e.g. data acquisition devices, population
characteristics) [I]. Considering the impact of such
errors, induced systematic bias needs further anal-
ysis for applications to medical imaging. In this
paper, we study the impact of potential unknown
confounders caused by dataset composition. To
this end, we focus on pneumonia datasets as a case
study.

1.2 Pneumonia
tions

X-ray manifesta-

Pneumonia is an infection mainly caused by bac-
teria or viruses, that manifests in inflammation of
the lungs alveoli, which fill with fluid or pus that

cause painful breathing. It is especially dangerous
in children, older adults and immunosuppressed pa-
tients, causing over 15% of deaths in children under
5 years old worldwide [I5]. The differential diag-
noses of pneumonia includes examination of a chest
radiograph (CXR) by trained specialists, often ac-
companied with the corresponding clinical history
and laboratory tests. Pneumonia generally man-
ifests in CXR as an area or areas with increased
opacity [3]. An example of CXR is presented in Fig-
ure [I] Pneumonia diagnosis on CXR can be ham-
pered by several conditions, including pulmonary
oedema, atelectasis, or lung cancer as well as other
characteristics such as patient position, or depth of
inspiration [9].

Normal

Bacterial Pneumonia Viral Pneumonia

Figure 1: Example of CXRs, the left side panel
present a normal case, middle and left panels, pneu-
monia cases with visible opacities, from: [I1]

2 Material and Methods

2.1 Dataset 1: Guangzhou Women
and Children’s dataset

This CXR dataset contains anterior-posterior im-
ages selected from a retrospective study of a pae-
diatric cohort of patients from one to five years old
from the Guangzhou Women and Children’s Med-
ical Centre at Guangzhou, China. It contains cat-
egorical labels for Pneumonia and normal. The la-
belling involved human expert grading conducted

by two specialists [10} [1T].

2.2 Dataset 2: RSNA Pneumonia
Detection Challenge

The RSNA Pneumonia Detection Challenge
dataset is a subset of the NIH CXR14 dataset,
which comes from the NIH Clinical Center, United
States of America [22]. The labelling involved six



human board-certified specialists. Labels consisted
of binary classification in positive and negative
based on previous findings [I4]. The additional an-
notations from the positive class are not employed
in this work.

2.3 Experimental design

To study the effect of potential unknown con-
founders in a CNN classification network for med-
ical imaging, we simulated different scenarios with
different degrees of confounding. For the sake of
simplicity we considered only two classes as tar-
get labels control and disease (pneumonia) and one
confounding factor: the age. Age is divided into
two groups: children (from dataset 1) and adults
(from dataset 2). Note that, despite we focus on
age as the crucial differential factor of the samples
coming from these two datasets, other sources of
variations such as scanner, protocol acquisition and
image preprocessing may also affect the results but
are not addressed in this conceptual study.

2.3.1 Dataset preprocesing

All samples were combined into a new dataset with
four classes: child control [CO] (n= 4273), child
disease [C1] (n= 1584), adult control [AO] (n=
20672) and adult disease [A1l] (n= 2614). Next,
the majority classes of the dataset were randomly
under-sampled to match the size of the minority
class (n= 1584), creating a balanced dataset. Then,
10% of the dataset was separated to create another
balanced dataset for external test. The remaining
90% was used to create 7 different combinations,
with different degrees of confounding.

Table 1: Confounding dataset combinations. Ratio
of samples of each class derived from each dataset.

Children dataset Adult (RSNA) dataset
Disease (C1) | Control (C0) | Disease (A1) | Control (A0)

Total 1 0.501 0 0 0.499
Total 2 0 0.499 0.501 0

Strong 1 0.474 0.024 0.024 0.474
Strong 2 0.024 0.474 0.475 0.024
Light 1 0.425 0.074 0.074 0.425
Light 2 0.074 0.423 0.425 0.074
Balanced 0.25 0.25 0.25 0.25

2.3.2 Confounding datasets

Table [1| summarises the composition of each con-
founding dataset combination.

e Total confounding: All the disease samples de-
rive from one age group class while all the control
samples derive from the other age group.

e Strong confounding: Most samples (95%)
from one class (control or disease) derive from
one age group (children or adult) and vice-versa.

e Light confounding: As described for strong
confounder but with an 85%.

e Balanced:. The categories are class balanced.

2.4 Training and evaluation

Each experiment proceeds as follows: a model is
trained on one combination, then evaluated against
the validation set (internal test) and the test set
(external test). Each model employs 80% of the
dataset for training and 20% for validation. Net-
works were training using the already per-train
models from torch-vision during 15 epoch using the
Leslie Smith’s 1 cycle policy [18]. Each experi-
ment was conducted 5 times (each time, the val-
idation set was a different random combination).
To study the effect of the architecture, the whole
study was conducted with three different standard
architectures: Resnet50 [6], Densenet121 [7] and
squeezenetl.l [8]. After the internal and exter-
nal evaluation, next each metrics per class chil-
dren and control was analysed. In the remainder
of the manuscript, we use AUC (area under the
ROC curve), disease and control recall at 50% as
representative evaluation metrics.

3 Experimental results

This section is structured as follows; In the first
place, we presented the results of the seven combi-
nations evaluated with the internal dataset to as-
sess the network accuracy with respect to a dataset
with the same confounding scenario, additionally in
order to explore the generalisation capacity of the
network, an external dataset that represents a bal-
anced scenario was employed. Further, we present
the result with more granularity to understand the



different behaviour based on the dataset (children
vs adult) and the class (disease vs control). Finally,
we presented the variation of AUC, disease and con-
trol recall with respect to the balanced dataset.
Since no significant differences were found across
different architectures, we present the detailed re-
sults from Resnet50.

In Figure [2| general AUC (on the left), we can
observe an overall good performance across con-
founding combinations, with a general tendency to
score higher in strong and total confounding lev-
els in the internal dataset. Nonetheless, the val-
ues drop, especially on these combinations, when
the model is evaluated using an external dataset.
Slight differences in performance can be observed
in both combinations of light and strong confound-
ing. These stand out further in the next two charts
(middle, and right), showcasing recall for control
class and disease class, respectively.

Such variations are explained by analysing the
children and adult classes separately. In Table [2|
results from the children and the adult classes are
presented. The dark colour indicates the majority
class for each imbalanced combination and light for
the minority. Here, we can observe that samples
from the children datasets generally score higher
than the adults’, not only when they represent
the majority class but also in minority conditions.
Hence, it seems that the adults’ class is more af-
fected by the confounding degree in light and strong
confounding situations.

In the two cases of total confounding, the dis-
ease and control cases proceeded from distinct age
groups (i.e. datasets), respectively. In one com-
bination, the disease cases originate from the chil-
dren dataset and the control cases from the RSNA
dataset. Conversely, the second total confound-
ing combination employed disease cases from the
RSNA dataset, and control cases from the children
dataset. In both cases, the external test evaluation
shows that the network fails to predict examples
that were not present during the training. There-
fore, the model was not able to generalise beyond
the provided examples. This behaviour is further
discussed in Section [l

Next, to assess the variation between disease and
control, and between each level of confounding, the
variation with respect to the balanced network was
analysed for each class as depicted in Figure[3] Neg-
ative values represent a drop in performance with

respect to balanced. Such drops are more common
for the adults” class in light and strong scenarios,
but similar in total confounding scenarios for both
classes. Positive values represent an increase in per-
formance, but at the cost of a reduced performance
with respect to the other category.

Since many ML research papers commonly ap-
proach the performance optimisation on exploring
the different architectures rather than datasets. We
aim to understand if the behaviour of confounding
is affected by the different architectures. Figure
depicts the AUC for Validation (Internal test) and
Test (External test) as well as the difference be-
tween the first two charts. We can observe almost
identical performance independently of the archi-
tecture employed to build the model.

4 Discussion

This section discusses the confounding effects pro-
duced by the seven different combinations of
datasets in our experiments.

Confounding effect in internal evaluation.
Models reported acceptable scores when evaluated
against the validation set (Fig. [2 dark blue), or
another dataset with the same confounding char-
acteristics. This is expected, but does not warrant
similar performance in external datasets.

Confounding effect in external evaluation.
When evaluated against a external balanced
dataset, the model’s scores drop (Fig. |2} light blue),
showcasing a general tendency to reduce the accu-
racy with respect to the confounding degree. This
may explain why a model can perform well during
the development phase but fail during the deploy-
ment phase.

Dataset behaviour with respect to the con-
founding degree. Each dataset has specific
characteristics that conferred different robustness
against confounding conditions. In our preliminary
results, the children class presented a better adap-
tation to such changes than the adults class. In
cases of total confounding (see Table both classes
presented similar effects but in the light and strong
confounding conditions the more robust dataset
(children) was better generalised by the model even
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Figure 2: AUC (left panel), control recall (middle), and disease recall (right) metrics from the internal
and external evaluation for each confounding dataset combination. Points represent the mean value and
the line the standard deviation.

Table 2: External test metrics per children and adult class. Light confounding in blue, strong in green

and total in yellow. Dark colour represents the majority class in imbalanced combinations.

[ Light 2

[ Strong 1

[ Strong 2

Total_1

Total 2

0.9896 =+ 0.002
0.9434 £ 0.0158

Balanced [ Light 1
AUC | 0.9888 & 0.002 | 0.9892 =+ 0.003
control
Children | recan | 09086 + 0.0072
class disease | ero7 4 0.011 | 07722 4 0.0259
recall
AUC | 0.7700 £ 0.0079 | 0.7484 + 0.0178
control
Adult | voml | 0:6604 £ 0.0056 | 0.2327 £ 0.0242
class disease | 7p30 4 0.0325
recall

0.4

0.2

0.0

Mean variation respect to Balance datasets

A 2 A 3 A 2
\9 \9 N N
W 5\‘0“9/ 6\‘0“9/ A g

metric = var_auc

0.7323 £ 0.0078

0.0380 + 0.0161

0.9826 + 0.003

0.5949 £ 0.0546
0.6841 + 0.0235
0.0189 £ 0.0113

metric = var_recall_control

. . . Y - - e

A 2 A 2 N
N N A
W ™ 6\‘0(\%/ o “009/ R

\0‘6\}

0.9801 =+ 0.003
0.8553 & 0.0457

0.6956 + 0.0152

0.0127 £ 0.0035

0.8122 4 0.003
1.0000 £ 0.0056

0.0063 £+ 0.0148

0.7654 + 0.138
0.0377 £ 0.0224

1.000 £ 0.000

0.5554 + 0.0421
0.0000 £ 0.0028

1.0000 = 0.0000

0.5351 + 0.0445
1.0000 £ 0.0034

0.0063 + 0.0035

metric = var_recall_disease

class
mmm  child
e adult

A 3 A 3 A 2
\9 \9 N N
W 6\‘0“9/ %\‘o“g/ A g

Figure 3: Mean of the variation with respect to the balanced dataset for the external test evaluation.
Error bars represent the standard deviation.
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Figure 4: Performance comparison between three different architectures of the seven confounding com-
binations. Left and centre charts represent the AUC of the network in validation (internal test) and test
(external test). The right chart depicts the difference between the previous two charts.

with fewer samples. More studies are recommended
to better understand this phenomenon. We conjec-
ture that, the more homogeneous and coherent the
dataset, the less probably the confounding effect is
learned as a strong feature, leading to better gen-
eralisation characteristics.

Effect of the confounding degree. In case of
total confounding, the model fails with a class
recall of zero for the unseen class and almost 1
for the seen class, suggesting that the models use
the age or other dataset-specific characteristics as
a learning shortcut (Table . This suggests that,
in cases of total confounded datasets (for instance
when each class stems from a different dataset), the
model may have a strong probability of failing to
predict the unseen class. This lack of generalisation
can result in dangerous translation issues when de-
ployed in real settings. A prominent case of this was
the combination of controls from the Guangzhou
Women and Children’s dataset and adult disease
samples (COVID-19 pneumonia), which has been
reported to be the most common combination in
peer-reviewed publications [4].

For the strong confounding scenario, all met-
rics report lower scores with respect to the balanced

models, but the negative effect can differ based of
the dataset robustness as discussed before. This af-
fects the disease class more than the control, which
might be explained by the higher variability in this
class due to the disease manifestation induced di-
versity. The adults class effect is close to the to-
tal confounding scenario, suggesting that unknown
confounders due to an uncontrolled class imbalance
can lead to dangerous settings for training clinical
models.

In light confounding conditions, the metrics
report lower scores with respect to the balanced
models but higher that in the strong confounder
(when comparing against the same group age). In
the adults group, the effect on disease recall when
the training datasets has a presence of just 15% is
similar to the total confounder, suggesting similar
conclusions than for the strong confounding.

Architecture impact The employed architec-
tures (Figure [4) were not found to have an im-
pact on the confounding effect. These results are
in line with other works which emphasise the need
for more data work [16] to improve ensure safe and
generalisable models.



5 Conclusion and future work

Model robustness and transferability are key re-
quirements for safe clinical models. This work
presents an experimental assessment of the effect of
the confounder in CNN-based solution for medical
image analysis. Both the confounding degree and
the dataset characteristics seem to influence the ef-
fect of potential uncontrolled confounders in mod-
els. These results demonstrate the hazardous effect
of confounders when applied to high-stake domains
such as healthcare. While many papers focused
on a model-centre approach employing benchmark
datasets, it is also crucial to consider other data-
centre aspects in other to develop safe solutions.

Additionally, these results could explain why
some models perform well even in confounding sce-
narios when the test employed contains comparable
confounding characteristics, but fail to translate to
different settings such as a hospital or new sam-
pling strategy where a model is deployed to. Impor-
tantly, the external evaluation is also susceptible to
present confounding characteristics. A better un-
derstanding of the dataset generation process (e.g.
through better documentation) could help mitigate
these issues.

Overall, these problems highlight the necessity of
designing an appropriate strategy for model testing
and auditing for future clinical use. The employ-
ment of metadata seems to have a relevant role in
the control for potential confounders. Metadata
can be employed during the design and evaluation
phases[I7]. For the former, it can be used to ensure
a balanced class presence in the datasets. In the
latter, it can help conduct a disaggregated evalua-
tion to ensure the model fairness and performance
for each subgroup of interest.

To confirm and expand these preliminary results,
we plan to extend our study, including more con-
founding factors, imaging modalities and medical
disciplines. Further, we aim to have a better under-
taking of the phenomena using some of the existing
tools within the framework of explainable AT and
model robustness.
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