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Abstract

We investigate the design of a convolutional layer
where kernels are parameterized functions. This
layer aims at being the input layer of convolutional
neural networks for audio applications or applica-
tions involving time-series. The kernels are de-
fined as one-dimensional functions having a band-
pass filter shape, with a limited number of train-
able parameters. Building on the literature on this
topic, we confirm that networks having such an in-
put layer can achieve state-of-the-art accuracy on
several audio classification tasks. We explore the
effect of different parameters on the network accu-
racy and learning ability. This approach reduces
the number of weights to be trained and enables
larger kernel sizes, an advantage for audio applica-
tions. Furthermore, the learned filters bring addi-
tional interpretability and a better understanding
of the audio properties exploited by the network.

1 Introduction

In audio signal processing, time-frequency repre-
sentations such as spectrograms are central tools.
They have an intuitive interpretation and reveal
insightful information to the human expert. It
is not a surprise that many deep learning ap-
proaches to audio signals use such representations
as well [5, 26]. It is also convenient as most of
the deep network architectures have been devel-
oped for image processing and require 2D arrays
of values as inputs. The network learns to detect
time-frequency patterns, similarly to what is done
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on images. Depending on the task, it may then out-
put a classification of a sound [25, 28], a denoised
signal [15] or separated sources [4].

These representations are conventionally made
using several types of transformations. In turn,
each transformation may have several parameters
that influence the representation. Until recently
these transformations and their parameters were
carefully chosen using expert knowledge.

The recent success of end-to-end learning where
the raw audio file is the input of the network (e.g.
Wavenet: [18, 22, 19, 30], Tasnet: [16, 17]), and
more recently LEAF [34], demonstrates the effi-
ciency of this approach for a variety of audio tasks.
In this setting, one-dimensional convolutions are
applied to raw audio signals and the network cre-
ates its own representation by learning the convo-
lution kernels. However, kernel size needs to be
much larger than the one used for image appli-
cations. Indeed, at a sampling rate of 44kHz, 44
samples represent 1 ms of audio signal. To capture
audio patterns that have duration of 10, 100 ms or
more, in particular low frequency patterns, either
large kernels are needed or deeper convolutional ar-
chitectures (to allow for combinations of kernels at
many different positions in time). Both solutions
lead to a large increase in the number of parameters
to be learned and hence require more training time
and more data. Dilated convolutions or ”atrous”
convolution employed in Wavenet have been intro-
duced in order to increase the time length of the
kernel without increasing the number of weights to
learn. Finding alternative ways for unlocking the
time-length limit is an important challenge for raw
audio processing in deep learning.

Replacing free kernels by parameterized filters,
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Figure 1: Network architecture using learnable filters. The first layer (in yellow) is a convolution
layer where the kernels are defined as functions (colored waveforms) with learnable parameters, such as
frequency and bandwidth. This functions are defined on a continuous domain and are then discretized
to fit in the convolutional layer. The rest of the convolutional neural network (CNN) can have any
standard architecture.

were the parameters are learnt, is an alternative
way for reducing the computational burden. This
is what we propose to investigate in the present
work. The free kernels are replaced by filters with
a few parameters in the first layer of the network,
as shown in Fig. 1.

Learning parametric filters is halfway between 1)
learning a standard convolutional layer, where all
the weights of the kernels are learnable and un-
constrained and 2) having a layer of kernels be-
ing fixed functions, where only the combination of
these predefined functions may be learnt. The first
approach is the most versatile but is computation-
ally intensive and more prone to overfitting. The
second approach used for example in the Scattering
transform [3, 1, 6], or in [11] benefits from an induc-
tive bias through the chosen kernel functions but is
less flexible. The concept of learning filters aims
at making an ideal compromise between flexibility
and inductive bias. It has been first introduced

in [29], [27], [33] and [12]. The first one introduces
Gaussian filters in the input layer. Parameters are
the amplitude, the Gaussian width and the modu-
lation frequency. An increase of the classification
accuracy is reported with the learned parameters.
However, the filter learning is seen as a fine-tuning
of the network after the first training pass with
fixed Gaussian parameters. In the present work,
the filter layer is fully integrated in the learning
process, the parameters are learned from the be-
ginning. In [27], the authors introduce a layer,
called SincNet, made of sine modulated functions
that approximate band-pass rectangular windows
in the frequency domain. The learned parameters
are the minimal and maximal cut-off frequencies of
each band-pass filter. One of the main results is
given by the cumulative frequency response of the
SincNet filters. The network tends to focus more on
particular regions of the frequency space, where for-
mants are localized. This is interesting, as it shows
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how the parameterized filters enable a precise inter-
pretation of the learning and underline particular
spectral properties of the data. The present work
goes further in this direction. Eventually, [12] intro-
duce Wavelet filter banks learned for speech recog-
nition. Each kernel is a Wavelet defined by a single
parameter, its scale. It shows evidences both of the
efficiency of this approach and of the possibility to
interpret the shape of the learned kernels. We com-
pare the efficiency of the Wavelet filters with sev-
eral other modulated windows and show that the
former under-performs on audio signals. More re-
cently and in line with our approach, [14] present
complementary results, on a different dataset, with
a focus on the sinc-square function, learning ei-
ther the frequency or the bandwidth of the filters.
Learnable Gabor functions combined with a modu-
lus layer and a learnable PCEN layer showed state-
of-the-art performance [34]. Comparing the effect
of replacing a standard convolutional layer by a set
of gammatone filters, [8] show an increase in the ac-
curacy of a speech separation task. This suggests
that an hybrid approach of learned gammatone fil-
ters would combine the best of both worlds.

We propose several parameterized functions and
compare them to recent works on the same topics
that use learnable filters. We confirm that this ap-
proach reaches state-of-the-art accuracy and even
improves the accuracy on several audio classifica-
tion tasks. We explore the influence of different
parameters on the learning, such as the numbers of
kernels and their length. Our classification exper-
iments show that the number of filters required to
obtain the best results remains small, around 20-
30. We also demonstrate that the performances of
different functions proposed in audio signal process-
ing (modulated Gaussian, Gammatone) give close
results and are better than Wavelets at classifying
sounds. Last but not least, a relationship between
the central frequency of the filter and its temporal
width emerges with the learning. We provide evi-
dences that the network converges to an auditory
frequency spacing, close to the ERB (Equivalent
Rectangular Bandwidth) and Bark scales found in
psycho-acoustic studies [35, 9].

2 Learnable filter banks

We call the parameterized kernels in the convolu-
tional layer filters, making a parallel with filters
in signal processing. Indeed, these functions have
the property of being band-pass filters and are well
known in audio signal processing. One of the train-
able parameters of each filter is the central fre-
quency of the band-pass filter. The second param-
eter is the bandwidth of the filter (or a quantity
closely related to it). Hence this set of filters forms
a filter bank where the frequency and bandwidth
of the filters may be adapted to the data and to
the learning task. Note that the learned filterbank
may not cover the entire spectrum but should fo-
cus on important spectral regions that are the most
discriminative for classification.

We call the convolutional layer made of learnable
filters, Learnable Filter (LF) layer. The input of
the LF layer is a 1D audio signal and the output
is a 2D representation. The output representation
axes are time and filter number. Since each filter is
associated to a particular frequency band, this 2D
representation can be seen as a time-frequency one
(or time-scale in the case of Wavelets). Initializing
the filters by increasing frequencies (or scales), we
can influence the frequency ordering to follow the
filter number.

In all the definitions, N denotes the filter length
and n is the variable (sample number). The time in
seconds is expressed using the sampling frequency
fs with t = n/fs. The frequency in Hertz is de-
fined by f ×fs, where f ∈ [0, 0.5] is the normalized
frequency in the formulas.
Mexican hat Wavelet. In order to compare
to the state-of-the-art, we use the Mexican hat
Wavelet introduced in the paper by [12]:

w(n) =
2

π1/4
√

3s

(
n2

s2
− 1

)
e−

n2

s2 , (1)

with n ∈ [−N/2, (N − 1)/2] and s > 0 being the
scale parameter.
Gaussian filter. Here, n ∈ [−N/2, (N − 1)/2].
The Gaussian filter, also used in [29, 34], g is de-
fined as follows:

g(n) =

√
2√
πσ

e−
n2

2σ2 (cos(2πfn) + i sin(2πfn)) .

(2)
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The parameter σ > 0 is the variance of the Gaus-
sian (temporal window width) and f is the oscil-
lating frequency. It is a complex-valued function
that we split into its real and imaginary parts. For
each f and σ two kernels are created, one with the
cosine modulation and one with the sine one.
Gammatone filter. The Gammatone filter [7, 24,
10] is another example of kernel. It is defined on
the interval n ∈ [0, N − 1] as :

h(n) = A(γ, b)nγ−1e−2πbn cos(2πfn) (3)

where A is the normalization1, A(γ, b) =√
2(4πb)(2γ+1)/Γ(2γ + 1). The parameter γ is the

order of the Gammatone. It can be learned or fixed
to e.g. 2 or 4. These two latter values are the best
suited ones for modeling the human hearing related
filter bank [23]. The other learnable parameters are
b, related to the width of the function, and f the
frequency. The symbol Γ denotes the Gamma func-
tion. The bandwidth B of h depends linearly on b
and is given by the following formula [7]:

B(γ, b) = 2(21/γ − 1)1/2b. (4)

Remark 1 : All the functions are defined and nor-
malized in the continuous domain. In our appli-
cation, the filters are discretized and truncated in
order to be implemented in the convolution layer.
Since they all vanish away from zero, it remains a
good approximation, provided that the function’s
width does not exceed the fixed filter length N .

Remark 2 : The modulated window functions are
defined with a cosine (real part) and a sine (imagi-
nary part) term, relating them to the Fourier trans-
form, the spectral domain and the standard defini-
tion of filters in signal processing. For the sake
of simplicity, in our experiments, we have chosen
to use only the cosine term. The absence of the
sine term did not affect the accuracy of our classi-
fication results. The network is able to adapt and
detect discriminative patterns with a shifted cosine
modulation.

Remark 3 : It is important to distinguish the fil-
ter length N from the filter temporal width σ or b
(or s for the scale). The filter length is fixed, can

1This is an approximation of the normalization ob-
tained by computing the integral of the continuous func-
tion tγ−1e−2πbt, using the following result:

∫∞
0

tne−btdt =
Γ(n+1)

bn+1 .

not be learned and is the size of the vector on which
the filter is defined. The temporal width is learned
and specifies the spread of the function over the
vector of size N .

3 Experiments

We apply our LF layer to several classification tasks
described in the following sub-sections. We assess it
on standard tasks found in the literature presented
in the introduction. We have chosen 2 freely avail-
able speech datasets: AudioMNIST [2] and Google
Speech Commands v2 [32]. Both datasets contain
words pronounced by different speakers. These
datasets are dedicated to limited-vocabulary speech
recognition tasks and the goal is to train the net-
work to correctly recognize the word present in each
audio sequence.

In order to compare the impact of the LF layer
on the learning and classification results, we use
existing network architectures and modify the first
layer. For networks with raw audio input, the first
convolutional layer (performing a standard 1D con-
volution) is replaced by our proposed parameter-
ized convolution layer, as illustrated in Fig. 1. Our
layer is then followed by a non-linear ReLU acti-
vation function. A stride parameter is available al-
lowing to define the overlap in time of consecutive
convolutions. The code needed to reproduce the
experiments is publicly available on GitHub2.

3.1 AudioMNIST Results

The original AudioMNIST paper [2] performs digit
classification using raw audio as input to a net-
work called AudioNet. The code3 supplied with
the paper has been re-used to perform 5-fold vali-
dation on the data. AudioNet is made of six con-
volutional layers, each convolution being followed
by a max-pooling layer, and two dense layers, con-
nected to an output layer. In all tests performed
using this dataset, the models were trained using
the Adam optimizer with default parameters dur-
ing 50 epochs. Batch size used was set to 256 and
loss function used was the categorical cross-entropy.

2https://github.com/epfl-lts2/

learnable-filterbanks
3https://github.com/soerenab/AudioMNIST
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Figure 2: Bandwidth and frequency of learned filters.The curves are the psycho-acoustical relationships
given by the ERB and Bark scales.

Test accuracy was then computed after this train-
ing phase and the same process was repeated for
each fold.

On the AudioMNIST dataset sampled at 8 kHz,
AudioNet has ca. 17 million trainable parameters.
The original paper from [2] claims an accuracy of
92.53%±2.04%, whereas our implementation of Au-
dioNet using Keras and Adam optimizer (instead of
SGD in the original paper) yields an average accu-
racy of 94.9%±1.54%, which is already a significant
improvement. We performed the same 5-fold vali-
dation using a modified version of AudioNet where
the first convolutional layer is replaced by a LF
layer. This layer consists in 32 4th-order Gamma-
tone filters of length 80 (corresponding to 10 ms
at 8 kHz). The stride has been set such that the
overlap between two consecutive convolution steps
is equal to 75%. In this modified network, the num-
ber of trainable parameters drops to ca. 3.5 million
trainable parameters, i.e. a reduction in size by a

factor 5. Using the LF-enabled AudioNet the aver-
age accuracy increases to 96.8%± 1.22%.

Another LF-enabled network was used to per-
form the classification task on AudioMNIST. The
architecture is derived from the raw waveform
model SampleCNN introduced in [13]. Despite
its much smaller number of trainable parameters
(ca. 300’000), its average accuracy improves to
98.0% ± 0.41%. For the sake of completeness, we
also trained this network, replacing the Gamma-
tone filters by the learned wavelets as in [12], and
the learned SincNet filters from [27]. A summary
of all results achieved using AudioMNIST can be
found in Table 1.

3.2 Google Speech Command

The Google Speech Command dataset [32] provides
similar data to the AudioMNIST one, with a larger
number of classes (35). As done in [34] and its ac-
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Table 1: AudioMNIST mean test accuracy

Network # Trainable parameters Avg. accuracy

AudioNet 17 M 94.9%± 1.54%
LF-AudioNet 3.5 M 96.8%± 1.22%
LF-custom (Gammatone) 300 k 98.0%± 0.41%
LF-custom (SincNet) 300 k 97.2%± 1.0%
LF-custom (Wavelet) 300 k 89.9%± 1.18%

companying code, we used the pre-defined dataset
from Tensorflow which reduces the number of la-
bels to 12, by merging a number of samples into an
unknown class.

Given that Google Speech Commands does not
possess pre-defined folds for n-fold validation, the
experiments were repeated 3 times in order to com-
pute the mean accuracy. In [34], the authors train
a learnable parametric frontend similar to the one
introduced in this paper. Their framework, called
”LEAF”, consists in a frontend, a convolutional
network, and a final layer adapted to the number
of classes in the dataset. The frontend is made
of a learnable Gabor filter bank, a learnable pool-
ing function, and a learnable smooth compression
function. We reproduced the experimental set-
ting from [34], using a frontend made of 40 or-
der 4 Gammatone filters, overlapping by 80% and
having a length representing 25 ms. In one ex-
periment, we did not use the learnable pooling
and compression methods present in LEAF and in
the other we did use the complete LEAF pipeline.
The convolutional network, based on EfficientNet-
B0 [31], had been trained using the Adam opti-
mizer during 30 epochs with batches of 128 and
256 samples, and using learning rate reduction on
plateaus. The resulting network has ca. 3.5 million
trainable parameters. The test accuracy from [34]
using the complete LEAF model with Gabor fil-
ters is 93.4%± 0.3. In our experiments, we ob-
served that using Gammatones over the complete
LEAF pipeline lead to results very close to the ones
achieved with Gabor filters, i.e. ca. 93% of test ac-
curacy. Using the simpler version without learnable
pooling and compression, test accuracy improves to
94.31%± 0.1, when using batches of 128 samples.

3.3 Properties of learned filters

The learned parameters of the LF filters can re-
veal insights about the data and the learning pro-
cess. As stated in the introduction, several stud-
ies have shown a tendency governing the spacing
in frequency of their learned kernels. The spacing
becomes exponentially large as the frequency in-
creases, following what is called a Mel scale [21].
This is in agreement with psycho-acoustics tests on
the human cochlear system. In order to go further
in this direction, we investigate 1) the frequency
spacing and 2) we test the relationship between
the temporal width of the filters and their cen-
tral frequency. Indeed, psycho-acoustic models (the
equivalent rectangular bandwidth (ERB) model [9]
and the Bark model [35]) provide such a relation-
ship. This is made possible by our approach where
the temporal width as well as the filter central fre-
quency are well defined for each filter.

Bandwidth and frequency. The learned filter
banks can be compared to filter banks modeling
the human auditory system. Two main models can
be found in the literature, the Equivalent Rectan-
gular Bandwidth (ERB) model [9], and the Bark
model [35]. The ERB and Bark curves are plotted
on Fig. 2, together with the learned parameters of
the Gammatone filters initialized with different or-
ders, and the Gabor filters. All the filters have been
trained using the LEAF network and the Google
Speech dataset, used in section 3.2. We observe a
good agreement between the ERB curve and the
learned Gammatone filters of order 4 and 6. The
agreement is even stronger below 2 kHz. Gamma-
tone filters of order 2 and Gabor filters do not ex-
hibit this behavior and do not follow neither the
ERB, nor the Bark curves, while keeping a simi-
lar test accuracy on the Google speech commands
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dataset. In [27], the authors show that for a neural
network applied to a speech dataset, the focus of
the learning is situated around the pitch frequency
located at 130Hz (male) and 230Hz (female), and
the first and second formants (i.e. resonances of
the vocal tract [20]), which are around 500Hz and
1kHz respectively. This is exactly the frequency re-
gion where our learned filters match the ERB scale.
Frequency spacing. To show the importance
of the frequency spacing, we initialized the LF
layer with a linear frequency spacing from 0 to the
Nyquist frequency. After the learning phase, the fil-
ter frequencies evolved and moved away from their
initial value as can be seen on Fig. 3. The frequency
distribution is not exponential (as in the case of the
Mel scale) but we can point out several interesting
facts. Firstly, the final curve is flatter than the ini-
tialization in the range 0-2kHz (more filters in this
range). It shows that the network tends to favour
filters with a band-pass in this range for its discrim-
inative process. Secondly, beyond 4kHz, the filters
stay close to their original value. This suggests that
there is not enough meaningful information in this
frequency range for a correct learning. This is in-
deed the case for speech dataset where we found
that the main information resides below 4kHz.

Figure 3: Frequency distribution of the filters be-
fore (straight line) and after training (green curve)

4 Conclusion

Decades of research in audio signal processing have
brought us an important knowledge about sounds,
speech and audio information. This knowledge may

be inserted within neural networks as a priori in-
formation and turned into efficient inductive biases.
This is what we show with the example of the LF
layer, a layer of parameterized filters adapted to
the extraction of audio information. Moreover, the
trained network possesses properties than can, in
turn, bring new insights about audio data back to
the audio signal processing community. For exam-
ple, the optimal relationship between frequency and
bandwidth seems to be influenced by the envelop
shape in a non-trivial manner.

Future work in this direction and further devel-
opments of convolutions with parameterized func-
tions may lead to important progress both in deep
learning and audio signal processing. The reduc-
tion of the number of trainable parameters de-
creases the network complexity, along with the
training time. It also enables a better interpreta-
tion of the network adaptation to the data.
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