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Abstract

The problem of interpretability for binary image
classification is considered through the lens of ker-
nel two-sample tests and generative modeling. A
feature extraction framework coined Deep Inter-
pretable Features is developed, which is used in
combination with IntroVAE, a generative model ca-
pable of high-resolution image synthesis. Exper-
imental results on a variety of datasets, including
COVID-19 chest x-rays demonstrate the benefits of
combining deep generative models with the ideas
from kernel-based hypothesis testing in moving to-
wards more robust interpretable deep generative
models.

1 Introduction

While Machine Learning (ML) has enjoyed tremen-
dous growth in both academia and industry, it has
also caused concern in regards to its transparency
and interpretability [5, 23] in high-stakes decision
making in areas such as medicine and engineering.
In this paper, we consider interpretability for
binary image classification and focus on extracting
interpretable features that affect the classification
boundary. In this context, convolutional neural
networks (CNN) [2] are often used as they exhibit
superior performance. However, due to their
complexity, they are often considered black-box
models [12, 8]. In contrast, simple models such
as logistic classification applied directly to the
pixel representation would give an interpretation
in terms of pixel-wise effects, but these are not
meaningful for the overall classification task. A
compromise between CNNs and linear models (see
Figure 1) would be to consider lower-dimensional
latent representations for each image, where each
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Figure 1: Logistic classifier applied to latent repre-
sentations

element in the latent representations corresponds
to an extracted feature that is interpretable. Such
latent representations can be recovered by using
deep generative models, in particular when the
latent representations are linearly separated on
class. To impose such a structure on the latent
space, one can add a regularization objective to
the loss function of the generative model. In that
scenario, we can extract these features using a lin-
ear model and visualize them using the generative
component of our model. For the remainder of this
paper, we will consider features to be computable
quantities given any input and our goal is to
discover such quantities that are class-discerning.
Our motivation for building such an interpretable
framework is to extend the existing post-hoc
methods [22, 18] in the deep learning setting
by providing a more thorough analysis of latent
features and exploring deep generative models
as fundamentally interpretable models[3, 9]. We
consider a supervised approach when finding latent
features, as unsupervised disentanglement methods
are demonstrated to be incapable of recovering
these features[16]. A supervised method has the
added benefit of imposing structure on the latent
space, potentially improving the robustness of the
generative model to adversarial attacks [6].
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We pose the following questions to guide us:
1. How can we find linearly separated latent rep-
resentations?
2. What implications on performance do such la-
tent representations have?
3. How can we interpret a model using linearly
separated latent representations?
The rest of the paper is organized as follows. We
start by providing desiderata for a generative model
that can be used for our purposes, leading to the
choice of Variational AutoEncoders (VAE) and its
variants. We then present our main contribution:
the framework termed Deep Interpretable Features
(DIF) and its key components. The following sec-
tions describe our experimental setup and evalua-
tion criteria, present empirical results and ablation
studies, followed by concluding remarks.

2 Background: Generative

Modeling

We present desiderata based on our application
needs and provide examples and motivation for fea-
sible and unfeasible generative model choices.

Desiderata. Consider generative models G : z —
x and the latent representations z of images X in
the context of interpretability:

1. z is a low dimensional representation of x.

2. Semantically dissimilar images are encoded
into semantically dissimilar latent representa-
tions z.

3. Semantically dissimilar latent representations
are decoded back into semantically dissimilar
images through G.

4. All latent representations have a visually
meaningful map G(z).

If desideratum 1 does not hold, G(z) fails to
generalize pixels into features. If desideratum
2 does not hold, distinguishing images on a
feature-wise basis will fail. If desideratum 3 or 4
fail, then features found in latent space would not
bear any visual meaning when decoded back. We
briefly review the generative model literature in
the context of our desiderata below.

VAE [13] based models are generally the most
feasible, as they have an encoder component that

can be trained to directly map images to latent
representations.  In particular they encourage
desideratum 3 by training on the reconstruction
error objective Lyecon(x,G(z)) = ||G(z) — x|
The only shortcoming of VAEs is the quality
of the synthesized images, which many different
variations address [10, 19].

Generative Adversarial Network (GAN) [7]
based models work well due to the adversarial
training procedure which encourages desideratum
4. However, they become computationally infeasi-
ble; as GANs do not have an encoder, one needs to
reverse optimize [15] a GAN generator to obtain
the latent representation of each image.

Normalizing flows [21] are not feasible since
they do not yield low dimensional latent represen-
tations due to their bijection property.

We conclude that VAE-based models are the
most suitable choice wherein the problem lies in
finding a suitable variation capable of achieving
our aims.

3 Main Result: Deep Inter-
pretable Features (DIF)

We propose our framework Deep Interpretable Fea-
tures (DIF), which at its core gives any generative
model the three following properties:

1. Encourages the generative model desiderata

through a training objective

2. Finds interpretable features
As the majority of the technical contribution lies
in property 1, we begin by reviewing the necessary
literature in kernel two-sample testing.

3.1 The Mean Embedding test

Non-parametric  hypothesis testing considers
whether two independently and identically drawn
samples X = {x;}7,,Y = {y;}}?, € R? are
drawn from different distributions P and ) based
on observed samples X ~ P and Y ~ Q. The
null hypothesis Hy : P = (@ is tested vs. the
general alternative Hy : P # Q. We focus on
the Mean Embedding test (ME test) of [11],



which introduces a Hotelling’s T-squared statis-
tic computed using a kernel mean embedding

expressed as 5\,1 = nHZ S;lﬁn where h, =

LY by, hy = (k(xi,vy) — k(yi,v))io €
R/, S, =-L%" (h—h,) (h—h,), forn
observations.

The statistic depends on a positive definite
kernel k: X x X - R (With X C RY), and a set
of J prototypes V = {v;}7_; € R%. Under H,

A asymptotically follows y 2(J), a chi-squared
distribution with J degrees of freedom. The
ME-test is executed by calculating A and rejects
Hy if A, > T,, where the test threshold T, is given
by the (1 — «)-quantile of the asymptotic null
distribution y?(J) with o denoting the significance
of the test. When computing A, we modify the
statistic with a regularization parameter v, > 0,
giving An = nﬁ,—: (S, —|—*an)_1H,L, for numerical
stability. We use a slightly modified version of
the ME-test statistic proposed in [11] since our
application considers ny # nq. For different sample
sizes we use the pooled covariance version of the
ME-test statistic defined as

1 =
? n1n2hn1 na Sn1 na hnl,"2
/\m,ng = )
ni + no
S _ (’I’L1 - 1)S’ﬂ1 + (n2 - I)SHQ
ni,n2 ny + ng — 2 ’
hm,nz =

J
kX“V k , V GRJ.
(LS z)
(1)

We are now ready to present our first technique
in linearly separating the latent space.

3.2 Generative modeling objective:
Mean Embedding-objective

In principle, the VAE encourages all desiderata ex-
cept desideratum 2, which establishes the need of a
correction. To encourage desideratum 2 we intro-
duce the ME-objective for generative models. We
will denote a mapping parametrized by 6 as Ty(-),
labeled objects we wish to separate as (X, CY and

{ZX}l 1

batches of latent representations bx =

by = {Z;{}?2:1 with z& =
To(¢))
C

C'tanh (Lgf‘))’ z;{ =

C tanh ) and labeled prototypes vx C bx,

vy C by. The ME-objective A(bx, by, V) is calcu-
lated as

A(bx,by,V) =
bibah(bx, by, V)T (Sp, 5, + 75,.5,1) " th(bx, by, V)
b1 + b ’
h(bx,by,V) =
J

by
1
a;k bx,v;) — Zk by, v;)
Vv € V= {Vx;VY}.

(2)

The overall idea is to use Ty to map ¢* and (Y
away from each other such that z* and z' are
separated in latent space as shown in Figure 2.

Intuitively, we calculate the ME-test statistic
on batches of latent representations with randomly
subsampled prototypes for each label and train
Ty to 7pull” latent representations away from
each other by maximizing the ME-test statistic
as an objective. By maximizing A(bx,by,V)
with respect to byx,by we are maximizing the
statistical difference between z* and z" resulting
in Ty mapping apart ¢* and ¢¥. T, is updated
by first calculating A(bx, by, V) using subsampled
prototypes vy, vy from by, by and then taking the
gradient of A(bx, by, V) with respect to 0, detailed
in Figure 2. We train Ty on all objectives related
to the generative model, denoted L, to ensure
that z* and z¥ are separated under the condition
that they still retain a meaningful representation
to the generator G. The loss for Ty is then

L, (bx, by, X) = La(X) + naA(by, by, V) (3)

where X are any input required of the generative
model objective and ny < 0 is a hyperparameter
controlling the effect of the ME-objective. In a
VAE context, Ty can be the encoder or a mapping
between the encoder and decoder.

To prevent unbounded A(bx,by,V), the do-
main of z is bounded to [—C, C]d,C € R by
applying a C'tanh(g) transform to Tp(().



vx = SampleWithoutReplacement(bx, nx)
bIX = bx\VX S R(blinx)x‘i

vy = SampleWithoutReplacement(by, ny)
by = by\vy € Rb:=nv)xd

T
V = {Vx,VY}
A(by, by, V)

Figure 2: Calculating the ME-objective

3.2.1 Choice of generative model: In-

troVAE

We apply the ME-objective to the VAE variation
IntroVAE[10], which is a VAE with an additional
modified GAN objective. IntroVAE has demon-
strated to offer high quality image synthesis on
larger images coupled with a minimalistic VAE ar-
chitecture. This was favored over [19, 20] which
either offered too complicated setups or convoluted
latent representations. IntroVAE extends the train-
ing procedure of VAEs by training the encoder and
generator on

Lg(x,z) = ELBO (0, ¢;x)

+[m — DL (g (2 | %) [p(2))]
La(x,2) = D (4 (z | x) [|p(2))
+ Eq¢(z|x) [1ng0 (X ‘ Z)]

(4)

where [m — z]* = ReLU(0, m — z) serves as a sad-
dle point objective for the encoder py and decoder
ge using the KL-divergence between approximative
posterior and prior of z Dk, (¢4 (z | x) ||p(z)). DIF
is then applied by adding the ME-objective to the
encoder loss:

L(Xa bXabY) = ‘CE(X?Z) + nAA(bgivbg(aV) (5)
It should be noted that we take Ty to be the encoder
and consequently (’s are taken to be images. When
training DIF, we use both losses specified in eq. (3)
and eq. (5).

3.3 Isolating Features

To isolate features, we take our binary classifier
f(z) to be a L' regularized logistic regression
classifier.  We can then exploit the shrinkage
properties of the L' regularization to isolate the
most important features. We then select features
by their magnitude |w;|, where w; is the i:th

element in the linear weights w = [wy, ..., wy,].

We linearly separate the latent representations
by choosing a linear kernel k(x,y) = vx'y with
hyperparameter v > 0 for our ME-objective. With
z bounded by a tanh(-) transform, it follows that
A(bx, by, V) with a linear kernel also is bounded
[11].

4 Experiments

4.1 Data

We conduct our experiments on CelebHQ (sepa-
rating females with 18943 samples and males with
11057 samples, 256 x 256 x 3), COVID-19' chest
x-rays (separating healthy with 1602 samples and
COVID-19 infected with 434 samples, 256 x 256 x 1)
and MNIST (separating 3s with 7141 samples and
8s with 6825 samples, upsampled to 64 x 64 x 1).

All datasets are divided into training (90%)
and testing (10%) sets. We use the same architec-
ture for all generative models and their respective
components.

4.2 Evaluation

We evaluate our experiments in the following way
on test data:

1. Generative model performance: We es-
timate the log-likelihood and calculate the
ELBO on test data together with FID scores
[1] for fake samples.

2. Latent traversals: We traverse from an im-
age in P to an image in @ and judge if the
transition occurs smoothly without artifacts.
This evaluation is done to ensure the genera-
tive model does not overfit.

3. Predictive performance We compare our
L' regularized classifiers to a CNN classifier
(using the identical architecture as the en-
coder) fitted directly on images and measure
performance in Area Under the Curve (AUC).

IDisclaimer: The results presented for the COVID-19
x-ray data are for illustration purposes and further work is
needed to draw any medically relevant conclusions based on
them.
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4. Isolating features: We judge the extracted
features qualitatively on how distinct the fea-
tures are and how the latent transitions look.
We analyze the 3 largest features w; by mag-
nitude |w;| for a fix Ap1. Strong classification
performance for a large A;:1 indicates valid-
ity of the isolated features. We also report %

of non sparse features, which is calculated as
number ofw; >0.1 max |w|
total features

4.3 Benchmarks

Our benchmarks include vanilla IntroVAE, as well
as a method inspired by [17], detailed below.

A logistic separation objective As an ab-
lation study in order to demonstrate importance
of using an ME-based objective, we also con-
sider an objective akin to logistic regression ap-
plied to the latent space. Namely, instead of
using ME, we take A to be a logistic regres-
sion objective (i.e.  binary cross-entropy loss)

L(wTC tanh (T"T(O),yp/Q) for a linear decision
T (<)
boundary w'C tanh <9T

weight vector fixed w = 1144 but optimize the en-
coder parameters 0. Here, yp/o € {0,1} is the class
indicator for (. We want Tp to map {¢ '}, and
{(Y} 2, to their respective sides of a constant hy-
perplane w and thus minimize this objective. In
contrast to the ME-objective, this method imposes
the desired structure directly through a fix hyper-
plane rather than ”pulling” latent representations
apart through a kernel.

), where we keep the

5 Results

We present the quantitative comparisons in Ta-
ble 1. As classification performance tends to drop
when A1 = 0.1 for vanilla IntroVAE, we investi-
gate sparsity levels at this value.

Image Traversals Smooth artifact-free image
traversals between latent representations in Fig-
ure 3 indicate that no model is overfitting.

Isolating Features We present isolated features
using L' regularized logistic classification in Fig-
ure 4. DIF finds features that seemingly controls

Vanilla  Logistic ~ DIF

Figure 3: Image traversals for samples from P to
samples from Q.

facial hair, the width of numbers respectively, and
non-organ matter (non-heart grey matter) in the
lungs. These changes occur in an isolated fashion
compared to the other methods where one element
seemingly affect multiple visual features. In partic-
ular, we find that the non-organ matter is consis-
tent with medical results reported in [4, 14].
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Figure 4: Comparison of isolated features for all
three data sets. We traverse each feature between
(-C,C), the interval of our tanh transform.

We present the test accuracy of a L!-regularized
classification trained on the latent representa-
tions for different regularization values Apj1 €
{0.0,0.001,0.01,0.1} in Table 1. We find that
lasso regression surprisingly outperforms a CNN
for CelebHQ and the COVID-19 dataset for both
DIF and the logistic benchmark, where DIF yields
the most gains in classification performance. Mod-
els trained with DIF also retain performance for
sparser classifiers. As the percentage of non-sparse
features are higher for DIF, this suggests that DIF
finds more meaningful and robust features that dis-



fake-FID

Ao =01

dataset-model e log-likelihood ELBO Apr=0 At =0.001  Ap =0.01 At =0.1 o CNN
(n=32) %Non sparse

CelebHQ-DIF 103.64+4.177 -2239.1544+0.593 -2422.6224+1.508 0.983+0.002 0.98140.001  0.98£0.001 0.97£0.004 9.4%+4.9% 0.967£0.006
CelebHQ-Vanilla  107.184+3.612 -2301.92140.903 -2512.501+£3.796 0.94840.004 0.94540.002  0.924+0.003  0.744+0.015 2.7%+0.2% 0.967+0.006
CelebHQ-logistic  114.514+6.227 -2299.6714+0.834 -2471.561+£1.473 0.967+0.002 0.97+0.001  0.9440.003  0.769+0.004 2.9%+0.0% 0.967+0.006
MNIST-DIF 87.112+2.535 -71.487+0.03 -74.48640.047 0.992+0.001 0.992+0.001  0.989+0.002  0.939+0.001 29.2%+3.6%  0.994+0.007
MNIST-Vanilla 92.57440.89 -72.077+£0.038 -75.936+0.078 0.989+0.002 0.988+0.002  0.989+0.002  0.917+0.003 37.5%+0.0%  0.994+0.007
MNIST-logistic 88.89448.272 -64.51+0.01 -69.809+0.068 0.98940.001 0.98740.003  0.989+0.002  0.9094+0.002  43.8%+0.0% 0.994+0.007
Covid-DIF 214.266+1.426 -929.991+£1.596 -1122.549£10.712  0.99540.005 0.989£0.003  0.979+£0.01 0.952£0.01 10.0%+12.9%  0.983%0.009
Covid-Vanilla 253.28842.564 -761.591+0.151 -891.0842.046 0.977+0.004 0.968+0.005 0.968+0.021  0.888+0.025 2.3%+0.2% 0.983+0.009
Covid-logistic 247.358+7.338 -652.715+0.131 -759.1554+2.906 0.87440.027 0.852+0.012  0.91640.013  0.937+0.0 1.1%+0.2% 0.983+0.009

Table 1: All classification results in test data AUC, averaged over 5 runs. Sparser models do better
with DIF representation, which implies that DIF indeed imposes a linearly separable latent space. DIF
generally seems to improve image quality by the lower FID-scores reported for fake images. The improved
image generation quality is potentially caused by the structure imposed by DIF in latent space.

criminate between P and Q.

6 Analysis

Does DIF achieve its aim of separation in
latent space? We see that DIF achieves a very
good separation on the CelebHQ dataset in Fig-
ure 5. On MNIST, a separation objective is not
needed as the latent representations are naturally
separated by looking at the latent space of the
Vanilla model.

Data CelebHQ Covid MNIST

DIF

Logistic

Vanilla

Figure 5: UMAP visualization of z for test data.
Red points belong to P, blue points to ¢ and black
points denote prototypes.

Is DIF more robust to adversarial attacks?
As DIF correctly imposes a linearly separable struc-
ture on the latent space, we hypothesize this im-
proves resilience towards adversarial attacks and

DIF

Source
vion
g

Vanilla

Logistic

Figure 6: A denotes the strength of the adversar-
ial attack. A smaller lambda implies a stronger
attack. Both DIF and the Logistic benchmarks ex-
hibits robustness towards adversarial attacks, while
the Vanilla version starts to exhibit masculine fea-
tures at A = 0.005.

report this in Figure 6. We use the adversarial
attacks proposed in [6] to test the robustness.

7 Conclusion

We combined deep generative modeling with a
supervised objective based on kernel-based two-
sample testing (ME objective) to encourage the
separation between the classes in the latent space.
As a result, individual latent dimensions are more
interpretable and capture class-discerning image
features. Latent traversals for DIF between im-
ages of different classes exhibit smooth transitions,
indicating a smooth latent space. We note that a
linear classifier can then be applied to the resulting
latent representation, in some cases resulting in the
performance superior to CNNs on test data. Fur-
ther, imposing a linear structure on the latent space
improves robustness against adversarial attacks.
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