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Abstract

Adversarial Examples represent a serious problem
affecting the security of machine learning systems.
In this paper we focus on a defense mechanism based
on reconstructing images before classification using
an autoencoder. We experiment on several types of
autoencoders and evaluate the impact of strategies
such as injecting noise in the input during training
and in the latent space at inference time. We test
the models on Carlini-Wagner adversarial examples
for the stacked system, composed by the autoen-
coder and the classifier, in the white-box scenario.
Denoising autoencoders as well as injecting noise in
the dataset before training and in the latent space
at test time are effective strategies to improve the
robustness of classifiers.

1 Introduction

Adversarial examples are a serious threat for ma-
chine learning systems. They can be divided in
two main categories, white box-attacks [5} [12] 4} [T5]
in which the attacker has complete access to the
model (topology of the network and its weights) and
black-box attacks [16] [7, 20] in which the attacker
has only access to the predictions of the network.
Middle ground solutions are also present in the
literature in which the model is partially hidden.
Defense mechanisms can be found in the literature
both in the form of adversarial training [5l [I3] or of
an input transformation at inference time, such as
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compression, random croppings, and/or reconstruc-
tions [0, 8, 19, 14]. Gu and Rigazio [6] proposed
the use of an autoencoder to preprocess the images
in input to a classifier, with the aim of cleaning
input images from possible adversarial perturba-
tions. Lately, Huang et al. studied this defense
using Variational AutoEncoders [9]. Reconstructing
adversarial examples generated for a classifier with
an autoencoder yields performance close to the orig-
inal one on clean examples [0, [9]. However, while
the system is now robust to white-box adversarial
examples for the classifier, the defense fails against
white-box adversarial examples computed for the
composite system formed by the stacked autoen-
coder+classifier [6]. Athalye et al. [I] showed more
generally how obfuscating the gradients through
transformations of the input (an example of which
is the reconstruction through an autoencoder) does
not constitute an effective defense strategy. In order
to make claims about the robustness of a preprocess-
ing strategy based on autoencoders, it is necessary
to study the worst case scenario, where the attacker
has full access to both networks. For this reason,
in our study we use the Carlini-Wagner (CW) L2
attack [4], considered one of the strongest in the
literature [2] B3].

In this paper we study the desirable properties
for a defense mechanism based on autoencoders.
We present a detailed analysis of the robustness of
the stacked network when using different types of
autoencoders, such as vanilla AutoEncoders and
Variational AutoEncoders. We evaluate the impact
of denoising and contractive regularization on the
latent space of the autoencoder and will show how
this affects the robustness of the full system.
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2 Autoencoders

In this section we present the different types of Au-
toEncoders considered in our study. Variational Au-
toencoders [10) [I7] are a particular kind of autoen-
coders with a loss function derived from variational
inference principles. The ELBO, which provides
a lower bound for the log-likelihood is composed
of two terms, the reconstruction loss term and a
Kullback-Leibler divergence penalty term. The re-
construction term encourages mapping similar im-
ages close to each other in the latent space, while
the KL penalty term concentrates all hidden rep-
resentations in regions where the prior has high
probability density. The trade-off between these
two terms provides a regularization of the space
during training.

Denoising autoencoders [26] are trained to recon-
struct corrupted images to the corresponding clean
ones, differently from regular autoencoders which
are trained to compute the identity map. Denoising
is thus a more difficult task, but the reconstructions
generated by these models are less blurry and bet-
ter resemble natural images, which can make them
easier to classify.

Contractive Autoencoders [I8] penalize sharp
changes in the latent representations caused by small
changes in the input. The regularization term is the
squared L2-norm of the Jacobian of the function
x +— h, where x is the input and h is the hidden
representation. We propose to adapt the contractive
penalty for Variational Autoencoders, so that the
loss function becomes
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where a and 3 are parameters. For the purposes
of this paper, we will set 8 = 0, since having sharp
changes in the mean is a behavior that we believe is
more likely to lead to differences in the reconstruc-
tions of two similar images. We experiment with
vanilla AutoEncoders (AE), Variational AutoEn-
coders (VAE), as well as with their denoising (DAE,
DVAE) and contractive versions (CAE, CVAE).

3 The Carlini-Wagner Attack

We generate adversarial examples using the Carlini
Wagner L? attack (CW) [4], which is considered to

be a strong attack in the literature, having broken
many defenses [2, B]. CW is formulated as an op-
timization problem with a loss function composed
of two terms, the first one is the L? norm of the
perturbation, therefore encouraging finding subtle
adversarial examples, and the second one is an ad-
versarial loss which encourages the resulting image
to be as harmful as possible. In the literature of
adversarial examples [5] [I3], the threat model usu-
ally considered is where the attacker is allowed to
modify the input with a perturbation of a certain
maximal L norm equal to e. This is equivalent to
being able to modify each pixel of an image by a
maximum amount €. We created CW adversarial
examples that obey this constraint. At each iter-
ation of gradient descent, we project the current
perturbation on the L> e-box, centered in zero. For
VAESs, we consider the worst-case scenario attack,
where the attacker has disabled sampling in the
latent layer when generating adversarial examples.
By enabling sampling, noisy gradients would be
obtained resulting in a weaker attack.

4 Defense Mechanisms

The defense strategy studied in this paper is based
on preprocessing the input to a classifier with an
autoencoder [0, [9]. The idea is that a well trained
autoencoder should be able to learn the relevant
features of an image and reconstruct it properly, by
removing the adversarial perturbation. Moreover,
the autoencoder should also be robust enough not to
become the target of an adversarial attack itself [21,
11].

4.1 Injection of Noise in the Input

When training VAEs, adding noise to the input is
not just a form of data augmentation, but it is also
a recommended practice to guarantee numerical sta-
bility and to avoid overfitting [24] 25]. Due to the
KL regularization in the latent space of a VAE, the
approximate posterior is encouraged to be close to
the Gaussian prior AN'(0,1). If we do not train with
noise, most clean samples will be mapped to latent
representations having high probability density with
respect to the Gaussian prior, while perturbed im-
ages will be mapped outside this region. Training
with noise is thus necessary to be able to learn a



MNIST FashionMNIST BTSC

—e— st 00 —— st 00 —— —— s 00

== stp o1 I\ == stp o1 0 ——_ —— stp01

\ e stp02 —e stp 02 - —— stp02

- stp 03 - stp 03 - stp03

stp 0.4 stp 0.4 60 stp 04
40 40
20 20 20

w w
2 60 2 60 >

L Y N R TR T—r 86 om  oie N T TR TR Qo oges ool oom _ oom  oom oo 00w
epsilon epsilon epsilon
MNIST FashionMNIST BTSC
~— w00 ~— oo — w00
—¥= stp 0.1 I\ —¥— stp 0.1 = - = stp 0.1
80 e stp 0.2 80 e stp 0.2 80 = 5tp 0.2
— stp 0.3 — st 0.3 —= stp 0.3
Z 60 stp 0.4 Z 60 stp 0.4 Z 60 stp 0.4
Y R Y
» » »
L N S —r 86 om0l on___om  om  ow o fo oo 00w wom__oem oo aom 00w
epsilon epsiton epsiton

Figure 1: Accuracy of autoencoder+classifier on CW adversarial images vs maximum L* norm. AE
(top) and DAE (bottom) for different Gaussian noise standard deviations during training (stp).
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Figure 2: Accuracy of autoencoder+classifier on CW adversarial images vs maximum L* norm. VAE
(top) and DVAE (bottom) for different Gaussian noise standard deviations during training (stp). The
scaling factor for the sampling in the latent space is fixed to 1.
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Figure 3: Accuracy of autoencoder+classifier on CW adversarial images with different maximum L>
norm. VAE (top) and DVAE (bottom) with stp equal to 0.4 for various scaling factors.



MNIST-c-st0

FashionMNIST-st0

scale 0.0

scale 0.001
scale 0.01
scale 0.1

scale 1.0

tH

scale 0.0
scale 0.001

scale 001 — i scale 0.01
scale 0.1 T — scale 0.1

scale 1.0 Z 60

—e— scale 0.0

te

" epsilon
MNIST-c-st0

—e— scale 0.001
—— scale 0.01
e scale 0.0

3w scale 1.0

"~ epsilon
FashionMNIST-st0

035 030 035 0000 0,605 0,010 0.015 0,620 0,025 0.030 0,035
epsilon

BTSC

—e— scale 0.001
%= scale 0.01
e scale 0.0

—e— scale 0,001
sc:

scale 1.0

0320 05 030 035 000 0,005 0010 0015 0,020 0,025 0.030 0,035
epsilon

pilor

Figure 4: Accuracy of autoencoder+classifier on CW adversarial images with different maximum L
norm. CAE (top) and CVAE (bottom) with stp equal to 0.1 for various penalty coefficients.

latent space in which both clean and perturbed im-
ages are mapped to nearby points, and eventually
lead to similar reconstructions.

4.2 Increasing the Variance in the
Latent Layer

The idea of including stochastic layers in inference in
order to protect from adversarial examples has been
explored in the literature [28] 22]. The encoder of a
VAE has a stochastic layer which learns the param-
eters of a multivariate Gaussian distribution with
diagonal covariance matrix from which the latent
representation is sampled. The diagonal covariance
matrix of the multivariate Gaussian can be scaled
by a certain factor which is a hyperparameter of
the defense. Increasing the entries of the covariance
matrix by a factor corresponds to adding Gaussian
noise to the latent representation after sampling,
perturbing the internal representation of a VAE.
By doing this, we hope to find an advantageous
trade-off between quality of reconstruction and ro-
bustness of the classifier to an attack, by perturbing
it enough to escape the adversarial region.

5 Results

We made experiments on the MNIST, FashionM-
NIST [27], and Belgian Traffic Signs for Classifica-
tion (BTSC) [23] datasets. For each dataset, we
trained classifiers with 4 convolutional layers, fol-
lowed by a fully connected layer, and a softmax layer.
We trained AEs and VAEs whose encoders and de-
coders have 2 convolutional layers with 32 channels

each, 3x3 filters, latent size 128 and ReLU activa-
tion. In the training of AEs and VAEs, we injected
Gaussian noise with standard deviation in the range
[0.1, 0.4], also referred to as the stochastic parame-
ter (stp). For each combination of stacked autoen-
coder+-classifier, we created sets of adversarial exam-
ples, one for each value of € in the range [0.05,0.3]
for the MNIST and FashionMNIST datasets and
in [0.005, 0.03] for the BTSC dataset. We ran the
CW attack over the first 1,000 images in the test
sets of MNIST and FashionMNIST and over 1,000
randomly selected images from the test set of BTSC,
for 100 iterations, with learning rate 0.1, and pa-
rameters v = 1,k = 0. In Figs. 1-4 we present the
accuracy as a function of the maximum L*° norm
(e) allowed for the attack. Training with denoising
significantly improves the accuracy in some cases
(DAE on MNIST and FashionMNIST, and DVAE on
MNIST), while in others does not seem to negatively
influence the results. Autoencoders trained with
high stochastic parameter (stp) make the stacked
networks more robust, both for AEs and for VAEs.
The contribution of the stochastic parameter (stp)
seems more pronounced for VAE, DVAE, and DAE,
especially on MNIST and FashionMNIST (Fig. .
Rescaling the covariance of the approximate poste-
rior (Fig. [3) improves the robustness of the stacked
network for large perturbations. A trade-off exists
though, since large scaling factors degrade perfor-
mance on clean examples. A contractive penalty
can be slightly beneficial, for example in the case
of CVAE on MNIST and FashionMNIST (Fig. [4]).
However, in the other cases, this did not bring a
significant improvement or it decreased the accuracy
of the system.
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Figure 5: Plots of quantities of interest in the latent
space for the different models vs standard deviation
of the noise used during training (stp): (top) cosine
of the angle between p* and u, (bottom) ratio be-
tween the norm of p* and the norm of y, depending
on the magnitude of the perturbation (eps). Plots
are for a fixed ¢, specified in the picture; d0 and d1
denote no denoising and denoising, respectively.

In Fig. [5] we show the impact of adversarial pertur-
bations on the latent space analyzing two quantities
of interest: the cosine between p (mean of clean)
and p* (mean of adversarial), and the ratio of the

TP We choose € as the value of interest
2

for each dataset in which performance starts to de-
grade. The diameter of the set (i.e., the maximum
distance between points) of the encoded p is about
3 times bigger for AE than for VAE. This diameter
is growing for DAE while stays about constant for
DVAE, since the latent representation of VAE is
regularized by the prior. The perturbations in the
latent space have a similar magnitude instead, hence
the cosine of the angle and the ratio of the norms are
more stable for AEs than for VAEs (Fig.[5). DVAE
attenuates this by reducing the displacements in
the latent space and seem to provide a more stable
representation.

6 Conclusions

We studied the efficacy of a defense based on re-
constructing images with different types of autoen-
coders and explored the role of some hyperparame-

ters. Denoising models are more robust than their
corresponding non-denoising versions. Increasing
the magnitude of noise used to corrupt images in
training leads to more robust stacked networks. The
scaling factor in the latent space introduces a trade-
off between the accuracy on clean images and the
robustness on adversarial examples. The contractive
penalty can improve the performance in some cases,
while in others it is not beneficial. The diameter of
the set of the encodings is much larger in AEs than
in VAEs (due to the KL regularization term). The
relative adversarial perturbations in the latent space
are smaller in AEs than in VAEs. While we could
not clearly correlate this fact with a neat increase
in the accuracies for AEs, we plan to investigate
better this aspect to leverage the stability of the
latent space to our advantage. Possible limitations
of this study include having used relatively easy-
to-learn datasets, instead of more complex ones
such as CIFAR-10 or ImageNet, not having tested
residual networks as classifiers and not having used
other well-known strong attacks, such as BIM [12]
or DeepFool [15]. These will be all topics for future
study.

7 Acknowledgements

The authors are supported by the DeepRiemann
project, co-funded by the European Regional
Development Fund and the Romanian Govern-
ment through the Competitiveness Operational
Programme 2014-2020, Action 1.1.4, project 1D
P_37_714, contract no. 136/27.09.2016.

References

[1] A. Athalye, N. Carlini, and D. Wagner. Obfus-
cated gradients give a false sense of security:
Circumventing defenses to adversarial exam-
ples. ICML, 2018.

[2] N. Carlini and D. Wagner. Adversarial exam-
ples are not easily detected: Bypassing ten
detection methods. In AISEC, 2017.

[3] N. Carlini and D. Wagner. Magnet and
efficient defenses against adversarial attacks
are not robust to adversarial examples.
arXiv:1711.08478, 2017.



[4]

[15]

[16]

N. Carlini and D. A. Wagner. Towards evalu-
ating the robustness of neural networks. IEFFE
SEP, 2016.

I. J. Goodfellow, J. Shlens, and C. Szegedy. Ex-
plaining and harnessing adversarial examples.
ICLR, 2015.

S. Gu and L. Rigazio. Towards deep neural
network architectures robust to adversarial ex-
amples. ICLR, 2015.

C. Guo, J. R. Gardner, Y. You, A. G. Wil-
son, and K. Q. Weinberger. Simple black-box
adversarial attacks. ICML, 2019.

C. Guo, M. Rana, M. Cisse, and L. van der
Maaten. Countering adversarial images using
input transformations. ICLR, 2018.

U. Hwang, J. Park, H. Jang, S. Yoon, and
N. I. Cho. Puvae: A variational autoencoder
to purify adversarial examples. IEFE Access,
2019.

D. P. Kingma and M. Welling. Auto-encoding
variational bayes. ICLR, 2014.

J. Kos, I. Fischer, and D. Song. Adversarial
examples for generative models. IEEE Sym-
posium on Security and Privacy Workshops,

2018.

A. Kurakin, I. J. Goodfellow, and S. Bengio.
Adversarial examples in the physical world.
ICLR, 2017.

A. Madry, A. Makelov, L. Schmidt, D. Tsipras,
and A. Vladu. Towards deep learning models
resistant to adversarial attacks. ICLR, 2018.

D. Meng and H. Chen. Magnet: a two-pronged
defense against adversarial examples. In CCS,
pages 135-147, 2017.

S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard.
Deepfool: a simple and accurate method to
fool deep neural networks. CVPR, 2016.

N. Papernot, P. D. McDaniel, 1. J. Goodfellow,
S. Jha, Z. B. Celik, and A. Swami. Practical
black-box attacks against deep learning systems
using adversarial examples. ASIACCS, 2017.

[17]

[18]

[19]

[21]

[22]

[27]

D. J. Rezende, S. Mohamed, and D. Wierstra.
Stochastic backpropagation and approximate
inference in deep generative models. ICML,
2014.

S. Rifai, P. Vincent, X. Muller, X. Glorot, and
Y. Bengio. Contractive auto-encoders: Explicit
invariance during feature extraction. In ICML,
pages 833-840, 2011.

P. Samangouei, M. Kabkab, and R. Chel-
lappa. Defense-gan: Protecting classifiers
against adversarial attacks using generative
models. ICLR, 2018.

J. Su, D. V. Vargas, and S. Kouichi. One pixel
attack for fooling deep neural networks. TEVC,
2019.

P. Tabacof, J. Tavares, and E. Valle. Adversar-
ial images for variational autoencoders. NIPS,
2016.

O. Taran, S. Rezaeifar, T. Holotyak, and
S. Voloshynovskiy. Defending against adversar-
ial attacks by randomized diversification. In
CVPR, pages 11226-11233, 2019.

R. Timofte and L. Van Gool. Sparse represen-
tation based projections. In BMVC, 2011.

B. Uria, I. Murray, and H. Larochelle. Rnade:
The real-valued neural autoregressive density-
estimator. In NIPS, pages 2175-2183, 2013.

A. van den Oord, N. Kalchbrenner, and
K. Kavukcuoglu. Pixel recurrent neural net-
works. ICML, 2016.

P. Vincent, H. Larochelle, Y. Bengio, and P.-A.
Manzagol. Extracting and composing robust
features with denoising autoencoders. In ICML,
2008.

H. Xiao, K. Rasul, and R. Vollgraf.
Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms.
arXiv:1708.07747, 2017.

C. Xie, J. Wang, Z. Zhang, Z. Ren, and
A. Yuille. Mitigating adversarial effects through
randomization. ICLR, 2018.



	Introduction
	Autoencoders
	The Carlini-Wagner Attack
	Defense Mechanisms
	Injection of Noise in the Input
	Increasing the Variance in the Latent Layer

	Results
	Conclusions
	Acknowledgements

