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Abstract

The popularization of commercial, battery-
powered, camera-equipped, Vertical Take-off and
Landing (VTOL) Unmanned Aerial Vehicles
(UAVs) during the past decade, has significantly
affected aerial video capturing operations in vary-
ing domains. While UAVs have become affordable,
agile and flexible, providing access to otherwise
inaccessible spots, though, their limited resources
burden computational cinematography techniques
on operating with high accuracy and real-time
speed on such devices. State-of-the-art object
detectors and feature extractors are, thus, studied
in this work, in an attempt to find a trade-off
between performance and speed that will allow
UAV exploitation for intelligent cinematography
purposes. Experimental evaluation is performed
on three newly introduced, publicly available
datasets of rowing boats, cyclists and parkour
athletes, while evidence is provided that even
limited-resource autonomous UAVs can indeed be
used for cinematography applications.

1 Introduction

The use of camera-equipped Unmanned Aerial Ve-
hicles (UAVs) for covering public sport events, such
as bicycle or boat races, parkour shows and foot-
ball games, as well as for media production, surveil-
lance, search and rescue operations, etc., is becom-
ing increasingly popular, since UAVs are capable
of shooting spectacular videos that would other-
wise be very difficult and costly to obtain. Visual
analysis tasks may, thus, be of assistance in UAV-
based intelligent cinematography [5, 12, 14, 16],
e.g., for detecting and tracking a desired target,
or even in flight safety related tasks [21], such
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as obstacle detection and avoidance. Technologi-
cal progress has led to the production of numer-
ous commercially available UAVs with similar cog-
nitive autonomy and perceptual capabilities, but
the limited computational hardware, the possibly
high camera-to-target distance and the fact that
both the UAV/camera and the target(s) are mov-
ing, constitute achieving both high accuracy and
real-time performance rather challenging [9, 10, 11].

The most promising state-of-the-art approach to-
wards achieving real-time performance on the re-
stricted computational hardware on-board a UAV
is to use one-stage deep neural detectors, structured
around the concept of “anchors”. Such detectors,
e.g., Single-Shot Detector (SSD) [7] and You Only
Look Once (YOLOv2) [17], are based on the no-
tion of a convolutional Region Proposal Network
(RPN), simultaneously regressing the pixel coordi-
nates of multiple visible object Regions-of-Interest
(ROIs) (in the form of spatial offsets from the pre-
defined anchors) and assigning class labels to them.

SSD [7] is a single-stage multi-object detector,
meaning that a single feed-forward image pass suf-
fices for the extraction of multiple ROIs with co-
ordinate and class information, without internal
ROI pooling. In its original form, the detector
relied on the VGG16 [18] architecture for feature
extraction, with the addition of a number of lay-
ers upon it, so as to extract better defined boxes.
Two versions were proposed, one requiring an in-
put image size of 300×300 pixels and one requiring
500 × 500 pixels, with the latter producing better
results in terms of detection precision while being
significantly slower than the former. In [3], SSD
was used as a meta-architecture for single-stage ob-
ject detection and was compared to region-based
detectors. The experimental evaluation conducted
in this work, proved that when combined with Mo-
bileNets [2] and Inception v2 [4] feature extractors,
SSD is fastest than any region-based detector at
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the cost of detection precision, though.

Similar in nature to SSD, YOLO [17] is a widely
used object detector, whose popularity may be at-
tributed to its simplicity, stemming from its abil-
ity to detect multiple objects with a single for-
ward image pass, in combination with its speed,
which surpasses that of SSD. YOLO relies on a
custom architecture for feature extraction and is
pretrained on the ImageNet [1] publicly available
dataset. Its fully-convolutional architecture [7, 8]
allows the network to be trained and deployed at
any resolution, although odd multiples of 32 (the
network’s total subsampling factor) are preferred
in order for the final heatmap produced to effec-
tively divide the image into equally sized overlap-
ping regions. Each such region is responsible for
detecting any object whose center lies within it, by
fitting precomputed anchor boxes to the ground-
truth ROIs. Thus, input size affects not only the
size of the produced heatmaps, and consequently
the speed of the classifier, but also the maximum
number of boxes that can be detected.

These widely used, heavily studied, lightweight
neural architectures, along with the fact that
autonomous UAV usage for cinematography pur-
poses tends to become mainstream, inspired this
study aiming to identify the circumstances under
which these architectures could operate on such
resource-limited devices, making them suitable
for use in intelligent cinematography applications.
To this end, an extensive experimental evaluation
is performed, testing the detectors paired with
different feature extractors, and recording the ac-
curacy and time performance achieved for several
input image resolutions, in search of a trade-off
between detection accuracy and speed. Evaluation
is performed on three use cases, corresponding
to real-life applications suitable for autonomous
UAV coverage. The created datasets, which are
publicly available and can be downloaded from
http://www.aiia.csd.auth.gr/LAB_PROJECTS/

MULTIDRONE/AUTH_MULTIDRONE_Dataset.html,
the adopted protocols and the obtained results are
subsequently discussed.

2 Use Cases

In this Section, the experimental protocols adopted
are discussed and results on the following three use

cases are reported: row boat race, cycling race and
parkour. These scenarios were selected based on
the large benefits induced on their media coverage
process by exploiting autonomous UAVs for film-
ing and broadcasting. All time-dependent measure-
ments were made on an NVIDIA Jetson TX2 com-
puting board, i.e., a common embedded AI hard-
ware platform which is easily deployable on drones.
All three datasets were manually collected, anno-
tated and made public, as no publicly available
datasets of such data currently exist to the best
of our knowledge.

2.1 Lightweight Rowing Boat Detec-
tion

The use of lightweight convolutional object detec-
tor [13, 15, 19, 20] SSD (with various backbones)
was investigated regarding rowing boat detection.
First, rowing videos publicly available on YouTube,
as well as footage shot by Deutsche Welle from
the 2018 rowing regata in Wannsee were amassed,
constituting a large-scale dataset of 40786 images,
34191 used for training and 6595 for testing. The
dataset was then annotated with ROIs of rowing
boats. No need for the explicit creation of a valida-
tion set arose, due to the way the employed SSD im-
plementation operates (it automatically withholds
a random 10% of the training data for validation
purposes).

Table 1: Performance and speed (FPS) of various
versions of the SSD detector on TX2 trained on the
boats dataset.

Architecture Input Size (px) AP(%) FPS
SSD Inception v2 300 × 300 64.25 9
SSD Inception v2 400 × 400 67.20 8
SSD Mobilenet v1 FPN 320 × 320 59.84 5.8
SSD Mobilenet v1 FPN 480 × 480 71.34 3.8
SSD Mobilenet v1 FPN 640 × 640 76.15 1.2
SSD Mobilenet v2 300 × 300 61.90 7
SSD Mobilenet v2 400 × 400 65.40 6.1
SSDlite Mobilenet v2 300 × 300 56.13 10

Average precision (AP) and speed results on a
Jetson TX2 module, obtained using the SSD de-
tector coupled with MobileNet v1 and Inception v2
backbone feature extraction networks, are summa-
rized in Table 1, while rowing boat detection exam-
ples are given in Fig. 1.
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The Inception v2 extractor seems to be faster
than MobileNet v1, while also leading to more ac-
curate detections. Moreover, as expected, decreases
in input image resolution result in execution speed-
up but deteriorate performance, as the relatively
small input sizes used to train the detectors are
responsible for most of the false negative sample
instances arising. This is due to the fact that the
objects to be detected may sometimes be of rather
small sizes, e.g., boats far away from the camera,
and thus, lowering input image resolution shrinks
small target items to tiny, making them indistin-
guishable, even to the human eye.

Figure 1: Rowing boats detected by SSD detector.

2.2 Bicycle Detection

SSD detector was evaluated on another single-class
problem, that of detecting bicycles in a cycling race.
To this end, a dataset consisting of about 12k im-
ages was gathered from cycling events and about
77k cyclists were annotated, along with their bicy-
cles. As most of the shots were aerial, the anno-
tated objects (i.e., professional bicycles) are small
relative to image size and can be easily confused
with other vehicles, such as motorcycles, especially
in distant shots, while many partially occluded tar-
gets as well as motion blurred instances are also in-
cluded in the dataset. Finally, it should be noted
that, despite the fact that both the cyclist (“per-
son”) and “bicycle” classes are popular in datasets
such as COCO [6] and ImageNet, on which the de-
tectors have been pretrained, in this scenario, a
target is considered to exist only when both “sub-
objects” are detected close to each other.

Figure 2 illustrates the performance of SSD with
MobileNet v1 and Inception v2 backbone detectors.
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Figure 2: True positive vs false positive rate for the
SSD detectors with MobileNet and Inception base
models on the Bicycle Detection benchmark.

As expected, for a specific number of false pos-
itive detections, e.g., 500, performance rises dra-
matically as resolution increases — from 32.2% to
65.1% for MobileNet and from 34.5% to 64.5% for
Inception. By allowing more false positives, the

Table 2: Frames per second and precision scores for
various input sizes for the SSD with Inception v2
and MobileNet v1 feature extractors on the bicycles
dataset.

Input Size (px) Extractor FPS AP(%)

300 × 300
Inception v2 8.5 73.0
MobileNet v1 12.4 64.5

224 × 224
Inception v2 12.7 57.8
MobileNet v1 18.4 53.8

192 × 192
Inception v2 14.7 45.7
MobileNet v1 22.0 48.1

160 × 160
Inception v2 16.4 35.6
MobileNet v1 24.4 32.9

128 × 128
Inception v2 18.0 27.7
MobileNet v1 27.5 28.2

Inception models achieve higher recall rates, while
at around 22 FPS and 56.2% recall rate (at 500
false positives), the MobileNet v1 model at an in-
put resolution of 192 × 192 pixels is identified to
offer a great trade-off between speed and accuracy.
The same results are also summarized in Table 2
for both backbones and all input sizes. Bicycle de-
tection examples are depicted in Figure 3.
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Figure 3: Bicycles detected by SSD detector.

2.3 Parkour Athlete Detection

The single-stage detector YOLOv2, was also
trained to detect parkour athletes. More specifi-
cally, YOLOv2 pretrained on COCO public object
detection dataset was finetuned with parkour data
extracted from publicly available Youtube videos.
In detail, 8 videos were manually annotated with
parkour athlete ROIs, resulting in a 30624-image
dataset, 28372 of which were used for training and
2252 for validation purposes. Model testing was
performed on footage specifically captured for this
purpose at Bothkamp, resulting in 4987 more video
frames.

Table 3: One-class YOLOv2 results on parkour
dataset.

Input size (px) mAP(%) F1 FPS
608 × 608 76.17 0.79 3.8
544 × 544 77.20 0.81 4.1
480 × 480 77.74 0.81 7.2
416 × 416 78.01 0.81 8
352 × 352 78.56 0.78 9
288 × 288 70.99 0.75 10
224 × 224 70.20 0.68 16
192 × 192 61.56 0.63 19

The training protocol adopted was the following.
A one-class implementation of YOLOv2 detector,
pretrained on COCO dataset, was finetuned in or-
der to detect only parkour athlete instances. To
this end, only athlete annotations were used for
training, and COCO person class weights were em-
ployed for network initialization, aspiring to make
the detector capable of detecting athletes perform-
ing parkour as “persons”. Training sessions for sev-
eral input image resolutions were conducted, and
the obtained results are presented in Table 3, along
with the respective processing speeds for algorithm
execution on an nVidia Jetson TX2 board. The re-

ported metrics are mean Average Precision (mAP),
F1-measure and Frames per Second (FPS), in order
of appearance. Parkour athlete detection examples
are depicted in Fig. 4.

It can be easily noticed that as the input image
resolution falls, processing speed increases, while
the best mAP and F1 results are obtained at an
image resolution of 416 × 416 pixels. This can be
attributed to the fact that as image resolution gets
greater than 416 × 416 pixels, the increase in True
Positive Rate (TP) becomes smaller than the in-
crease in False Positive Rate (FP), thus resulting
in lower mAP scores.

Figure 4: Parkour athletes detected as “persons”
by one-class YOLOv2 detector.

3 Conclusions

This paper studied the use of state-of-the-art CNN-
based visual object detectors, namely SSD and
YOLO, on autonomous UAVs for cinematography
applications, under the assumption of limited re-
sources. A trade-off between the obtained accu-
racy and time required was searched for, and ex-
periments on three newly introduced datasets con-
sisting of rowing, cycling and parkour data, respec-
tively, indicated that for relatively low-resolution
input images, rather satisfactory results can be
obtained regarding detection accuracy, while also
achieving real-time or near real-time execution
speed on NVIDIA Jetson TX2 module. This is
made feasible with the aid of the fastest feature
extraction neural architectures currently available,
namely MobileNets and Inception v2. The ob-
tained results can thus be considered to provide
evidence that despite their limited resources, UAVs
can be employed effectively for computational cin-
ematography and embedded visual analysis tasks.
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